The Mechanics of Quadrupedal Galloping and the Future of Legged Vehicles

نویسندگان

  • James P. Schmiedeler
  • Kenneth J. Waldron
چکیده

Previous studies have noted that biological quadrupeds adjust their gaits when encountering drag in their locomotion. This paper investigates the hypothesis that these gait adjustments allow the legs to operate at an optimal working length when generating thrust. A 5-DoF dynamic model of a quadruped having a rigid trunk and massless legs is formulated. This model reflects the dimensions and inertial properties of a galloping machine the authors are designing. The constrained, steady-state motion equations governing the transverse and rotary gallops of the model are solved numerically for various levels of drag. The footfall phasing solutions for both forms of the gallop approach a partially in-phase gait, the half-bound, as drag increases. These gait transitions are the result of constraints requiring the legs to operate at their optimal working length when in contact with the terrain. Thus, the behavior of the model supports the original hypothesis. This paper also includes a discussion of future research directions in the field of artificial legged locomotion. KEY WORDS—galloping, quadruped, legged vehicles, impulse model

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking

In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...

متن کامل

On Passive Quadrupedal Bounding with Flexible Linear Torso

This paper studies the effect of flexible linear torso on the dynamics of passive quadruped bounding. A reduced-order passive and conservative model with linear flexible torso and springy legs is introduced. The model features extensive spine deformation during high-speed bounding, resembling those observed in a cheetah. Fixed points corresponding to cyclic bounding motions are found and calcul...

متن کامل

Effect of Gap Acceptance Behavior of the Right Turning Vehicles on the Major Road Stream for Uncontrolled Three-Legged Intersections under Mixed Traffic Conditions

Uncontrolled intersections are the intersections where there are no external signs or signals to control the movement of vehicles. In mixed traffic conditions priority rules are often violated by the road users. In All-way-stop-controlled intersections (AWSC), the vehicle should stop themselves before they enter the intersection and should check whether any vehicles are present in the other app...

متن کامل

A galloping quadruped model using left-right asymmetry in touchdown angles.

Among quadrupedal gaits, the galloping gait has specific characteristics in terms of locomotor behavior. In particular, it shows a left-right asymmetry in gait parameters such as touchdown angle and the relative phase of limb movements. In addition, asymmetric gait parameters show a characteristic dependence on locomotion speed. There are two types of galloping gaits in quadruped animals: the t...

متن کامل

A collisional perspective on quadrupedal gait dynamics.

The analysis of terrestrial locomotion over the past half century has focused largely on strategies of mechanical energy recovery used during walking and running. In contrast, we describe the underlying mechanics of legged locomotion as a collision-like interaction that redirects the centre of mass (CoM). We introduce the collision angle, determined by the angle between the CoM force and veloci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1999